

Table of Contents

Contents:

Table of Contents

	1. Setting up
	1.1. Git

	1.2. Jupyter

	1.3. R / RStudio

	1.4. Install the R Kernel for Jupyter

	2. Introduction to the Reproducible analysis and Research Transparency workshop
	2.1. Learning objectives for this workshop:

	2.2. Replication and reproduction

	2.3. Science retracts paper without agreement of lead author.

	2.4. Retracted, but not fraud

	2.5. The Four Facets of reproducibility:

	2.6. References / Sources

	3. Transparent, Reproducible and Open Research
	3.1. Transparency

	3.2. Questionable Research Practice

	3.3. Reproducibility

	3.4. Open reporting of results

	3.5. References / Sources

	4. Tools and Platforms for Reproducibility and Transparency in research
	4.1. R And The History of Reproducible Research

	4.2. The Open Science Framework

	4.3. Dryad

	4.4. Figshare

	4.5. Zenodo

	4.6. References / Sources

	5. Jupyter Notebook for Open Science
	5.1. Introduction to Markdown

	5.2. Markdown

	5.3. So, what is a Jupyter notebook?

	5.4. Cool! How do I install Jupyter?

	5.5. Ok, I’m set! What’s next?

	5.6. The Future of Jupyter

	5.7. Reading material

	5.8. References / Sources

	6. R for Reproducible Scientific Analysis (Jupyter)
	6.1. Data

	6.2. Code and document

	6.3. Loading and Cleaning Data

	6.4. Subsetting our data

	6.5. Using the vegan package

	6.6. Results

	6.7. Conclusions

	6.8. References / Sources

	7. R for Reproducible Scientific Analysis (RMarkdown / knitr)
	7.1. RMarkdown

	7.2. Creating a .Rmd File

	7.3. Anatomy of Rmarkdown file

	7.4. Chunk Labels

	7.5. Chunk Options

	7.6. Global Chunk Options

	7.7. Tables

	7.8. Citations and Bibliography

	7.9. Bibliography

	7.10. Placement

	7.11. Citation Styles

	7.12. Citations

	7.13. Publishing on RPubs

	7.14. Amazing Resources for learning Rmarkdown

	7.15. References / Sources

	8. Versioning with Git
	8.1. Software Carpentry source lesson

	8.2. Automated Version Control

	8.3. How can version control help me make my work more open?

	8.4. Storing our newly created Jupyter file to GitHub

	8.5. References / Sources

	9. Docker and Reproducibility
	9.1. Docker

	9.2. When to build a Docker image

	9.3. Distributing a Docker Image

	9.4. Running a Docker image

	9.5. Jupyter, Docker, MyBinder

	9.6. References / Sources

Indices and tables

	Search Page

1. Setting up

1.1. Git

If Git is not already available on your machine you can try to install it via your distro’s package manager. For Debian/Ubuntu run sudo apt-get install git and for Fedora run sudo yum install git

Windows

	https://git-for-windows.github.io/

	Download the Git for Windows installer.

	Run the installer

In any case, create also an account on GitHub [https://github.com] - it will be useful for the hand-on exercises.

1.2. Jupyter

Jupyter [http://jupyter.org/] notebook is an interactive web application that allows you to type and edit lines of code and see the output. The software requires Python installation, but currently supports interaction with over 40 languages.

Jupyter notebook examples [https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks]

1.2.1. Installation

Jupyter install instructions [http://jupyter.readthedocs.io/en/latest/install.html]

For new users, installation of Anaconda [https://www.continuum.io/downloads] is highly recommended. Anaconda conveniently installs Python, the Jupyter Notebook, and other commonly used packages for scientific computing and data science.

Use the following installation steps:

	Download Anaconda. We recommend downloading Anaconda’s latest Python 3 version (currently Python 3.5).

	Install the version of Anaconda which you downloaded, following the instructions on the download page.

Install on UNIX machines:

First we will install Anaconda, a package manager for Python libraries.

 curl -OL https://3230d63b5fc54e62148e-c95ac804525aac4b6dba79b00b39d1d3.ssl.cf1.rackcdn.com/Anaconda2-2.4.0-Linux-x86_64.sh
 bash Anaconda2-2.4.0-Linux-x86_64.sh

Install on Mac OS X:

First we will install Anaconda, a package manager for Python libraries.

 curl -OL http://repo.continuum.io/archive/Anaconda2-4.1.1-MacOSX-x86_64.sh
 bash Anaconda2-4.1.1-MacOSX-x86_64.sh -b

(If you are prompted, type Enter, then press Enter through the instructions. Be careful not to keep pressing Enter without reading otherwise you will end up saying No. You will need to type ‘Yes’ to continue with the installation.)

After Anaconda install has finished, type:

 source ~/.bashrc
 conda install jupyter
 conda install -c r r r-essentials

This will install packages allowing you to open either a new Python .ipynb or an R .ipynb.

Navigate to the directory on your computer with files you want to explore. Then type:

 jupyter notebook

This will open your browser with a list of files. Click on the “New” and bring down the pull-down menu. Under ‘Notebooks’, click on either R or Python language to start your new notebook!

You should see the files in the repository.

1.2.2. Using Jupyter notebooks:

The main keyboard command to remember is how to execute the code from a cell. Type code into a cell and then hit Shift-Enter.

If you’re in Python 2, type:

 print "Hello World!"

or for Python 3:

 print("Hello World!")

Then press Shift-Enter

For more instructions, the Help menu has a good tour and detailed information. Notebooks can be downloaded locally by going to the File menu, then selecting Download and choosing a file type to download.

1.2.3. References for learning Python

	http://rosalind.info/problems/locations/

	http://learnpythonthehardway.org/book/

	http://www.learnpython.org/

	http://www.pythontutor.com/visualize.html#mode=edit

1.3. R / RStudio

R [http://www.r-project.org/] is a programming language that is especially powerful for data exploration, visualization, and statistical analysis. To interact with R, we use RStudio [http://www.rstudio.com/].

Windows
Install R by downloading and running the correct installer file [http://cran.r-project.org/bin/windows/base/release.htm] from CRAN [http://cran.r-project.org/index.html]. Also, please install the RStudio IDE [http://www.rstudio.com/ide/download/desktop]. Note that if you have separate user and admin accounts, you should run the installers as administrator (right-click on .exe file and select “Run as administrator” instead of double-clicking). Otherwise problems may occur later, for example when installing R packages.

Linux
You can download the binary files for your distribution from CRAN [http://cran.r-project.org/index.html]. Or you can use your package manager (e.g. for Debian/Ubuntu run sudo apt-get install r-base and for Fedora run sudo yum install R). Also, please install the RStudio IDE [http://www.rstudio.com/ide/download/desktop].

1.3.1. Install the required packages

install.packages(c("dplyr", "tidyr", "vegan", "ggplot2"));

1.4. Install the R Kernel for Jupyter

Jupyter by default supports python, but this functionality can be expanded by using additional kernels. For our case, we will use also the R kernel. After launching R, run the following commands:

install.packages('devtools')
devtools::install_github('IRkernel/IRkernel')
IRkernel::installspec() # to register the kernel in the current R installation

That’s it, all done! You have now all the tools in place!

2. Introduction to the Reproducible analysis and Research Transparency workshop

2.1. Learning objectives for this workshop:

	Understand the concept, importance, and components of reproducible research.

	In practice, showcase an example of transparent and reproducible research, using existing tools.

The sciences have with reproducibility problem (Nature article [http://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970]
Many published studies cannot be reproduced)

2.2. Replication and reproduction

Peng (2009) Reproducible research and Biostatistics. Biostatistics 10: 405-408 [http://biostatistics.oxfordjournals.org/content/10/3/405.full]

	Replication - when independent investigators use methods, protocols, data, and equipment to confirm scientific claims.

	Reproduction - when data sets and computer code are made available for researchers to verify results.

2.3. Science retracts paper without agreement of lead author.

	Journal retracted [http://news.sciencemag.org/policy/2015/05/science-retracts-gay-marriage-paper-without-lead-author-s-consent] a study of how canvassers can sway people’s opinions about gay marriage. Issues raised:

	Original survey data not made available for independent reproduction of results

	Survey incentives misrepresented

	Sponsorship statement false

	Two grad students attempted to reproduce the study and could not.

	they concluded the data must have been fabricated story [http://fivethirtyeight.com/features/how-two-grad-students-uncovered-michael-lacour-fraud-and-a-way-to-change-opinions-on-transgender-rights/]

2.4. Retracted, but not fraud

	One researcher had seven papers retracted because of irreproducibility [http://retractionwatch.com/2014/11/14/univ-no-misconduct-but-poor-research-practice-in-mgt-profs-work-now-subject-to-7-retractions/#more-23666]

	Couldn’t find the [data] (http://onlinelibrary.wiley.com/doi/10.1111/j.1468-1331.2011.03524.x/abstract)

	“Extensive” errors force retraction of lymphoma paper [http://retractionwatch.com/2013/01/14/extensive-errors-force-retraction-of-lymphoma-radiation-paper/]

	Many, many more irreproducible examples [https://github.com/Reproducible-Science-Curriculum/Reproducible-Science-Hackathon-Dec-08-2014/wiki/Irreproducible-Examples]

	Seizure study [http://retractionwatch.com/2013/02/01/seizure-study-retracted-after-authors-realize-data-got-terribly-mixed/] retracted after authors realized data were “Terribly mixed”

	From the authors of Low Dose Lidocaine for Refractory Seizures in Preterm Neonates: “The article has been retracted at the request of the authors. After carefully re-examining the data presented in the article, they identified that data of two different hospitals got terribly mixed. The published results cannot be reproduced in accordance with scientific and clinical correctness.”

	Bad spreadsheet merge kills depression paper [http://retractionwatch.com/2014/07/01/bad-spreadsheet-merge-kills-depression-paper-quick-fix-resurrects-it/], quick fix resurrects it

	The authors informed the journal that the merge of lab results and other survey data used in the paper resulted in an error regarding the identification codes.

	Original conclusion: Lower levels of CSF IL-6 were associated with current depression and with future depression.

	Revised conclusion: Higher levels of CSF IL-6 and IL-8 were associated with current depression.

2.5. The Four Facets of reproducibility:

	Documentation: note the difference between binary files (e.g. docx) and .txt files and why text files are preferred for documentation.

	Organization: tools to organize your projects so that you don’t have a single folder with hundreds of files.

	Automation: the power of scripting to create automated data analyses.

	Dissemination: publishing is not the end of your analysis, rather it is a way station towards your future research and the future research of others.

2.6. References / Sources

The information presented here is based on information found in these sources:

	BITSS 2017 Research Transparency and Reproducibility Training (RT2) - London [https://osf.io/cdfh7/]

3. Transparent, Reproducible and Open Research

Numerous problems threaten the integrity, credibility, and utility of research. Improving reproducibility will ensure that research is as efficient and productive as possible. The following figure (retrieved from the report of the symposium, “Reproducibility and reliability of biomedical research”, organised by the Academy of Medical Sciences, BBSRC, MRC and Wellcome Trust in April 2015. The full report is available from here [http://www.acmedsci.ac.uk/]) summarizes aspects of the conduct of research that can cause irreproducible results, and potential strategies for counteracting poor practice in these areas. Overarching factors can further contribute to the causes of irreproducibility, but can also drive the implementation of specific measures to address these causes. The culture and environment in which research takes place is an important ‘top-down’ overarching factor. From a ‘bottom-up’ perspective, continuing education and training for researchers can raise awareness and disseminate good practice.

[image: Reproducibility Issues]

Here we will address the three main pillars, i.e. Transparency, Reproducibility and Openness, along with some strategies best outlined in the following figure.

[image: Reproducibility Strategies]

3.1. Transparency

Questions to ask yourself:

	What is the nature/purpose of this best practice?

	When should I use it?

	How does its use differ by the nature of a research study?

Researcher degrees of freedom (Wicherts et al. 2017)

	Formulating hypotheses

	Hypothesizing After Results are Known (HARKing, Kerr, 1988)

	Designing the study

	Create flexibility

	Dependent and independent variables

	Exclusion of participants

	Power and sample size

	Studies are often underpowered

	The risk of bias is larger in underpowered studies

	Intuitions about power are often flawed (Bakker et al. 2016)

	Running the study

	Correcting, coding or discarding data during data collection in a non-blinded manner

	Determining the data collection stopping rule on the basis of desired results or intermediate significance testing

	Analyzing the data

	Choosing between different options of dealing with incomplete or missing data or ad hoc grounds

	Specifying pre-processing of data (e.g. cleaning, normalization, smoothing, motion correction) in an ad hoc manner

	Deciding on how to deal with violations of statistical assumptions in an ad hoc manner

	Deciding on how to deal with outliers in an ad hoc manner

	Reporting the study

	Failing to assure reproducibility

	Failing to assure replication

	Failing to report so-called “failed studies” that were originally deemed relevant to the research question

	Misreporting results and p-values

	Hypothesizing After Results are Known (HARKing, Kerr, 1988)

Biases
A researcher performs the data-analysis:

	He/she is aware of the study’s main hypothesis,

	He/she is likely to believe this hypothesis, and

	He/she often benefits directly from finding support for it.

Fugelsanget al. (2004)

	dismiss the inconsistent data on methodological grounds,

	while data consistent with a theory [were] met with little scrutiny

Schimmack(2012)

	Empirical studies no longer test theoretical hypotheses because they can only produce two results: Either they support the theory (p < .05) or the manipulation did not work (p > .05).

3.2. Questionable Research Practice

Data from John, L. K., Loewenstein, G., & Prelec, D. (2012). “Measuring the prevalence of questionable research practices with incentives for truth telling”, Psychological science, 0956797611430953 [http://journals.sagepub.com/doi/abs/10.1177/0956797611430953].

	Failing to report all of a study’s dependent measures (63.4%)

	Deciding whether to collect more data after looking to see whether the results were significant (55.9%)

	Failing to report all of a study’s conditions (27.7%)

	Stopping collecting data if the result is already significant (15.6%)

	Rounding off” a p value (e.g. p = .054, report p < .05) (22.0%)

	Selectively reporting studies that ‘worked’ (45.8%)

	Deciding whether to exclude data after looking at the impact of doing so on the results. (38.2%)

	Reporting an unexpected finding as having been predicted from the start (27.0%)

	Claiming that results are unaffected by demographic variables when one is unsure (or knows that they do) (3.0%)

	Falsifying data (0.6%)

3.3. Reproducibility

While understanding the full complement of factors that contribute to reproducibility is important, it can also be hard to break down these factors into steps that can immediately be adopted into an existing research program and immediately improve its reproducibility. One of the first steps to take is to assess the current state of affairs, and to track improvement as steps are taken to increase reproducibility even more.

Goodman, Fanelli, & Ioannidis (2016) note that in epidemiology, computational biology, economics, and clinical trials, reproducibility is often defined as:

the ability of a researcher to duplicate the results of a prior study using the same materials as were used by the original investigator. That is, a second researcher might use the same raw data to build the same analysis files and implement the same statistical analysis in an attempt to yield the same results.

This is distinct from replicability:

which refers to the ability of a researcher to duplicate the results of a prior study if the same procedures are followed but new data are collected.

Reproducibility can be assessed at several different levels: at the level of an individual project (e.g., a paper, an experiment, a method or a dataset), an individual researcher, a lab or research group, an institution, or even a research field. Slightly different kinds of criteria and points of assessment might apply to these different levels. For example, an institution upholds reproducibility practices if it institutes policies that reward researchers who conduct reproducible research. Meanwhile, a research field might be considered to have a higher level of reproducibility if it develops community-maintained resources that promote and enable reproducible research practices, such as data repositories, or common data-sharing standards.

3.3.1. Automation and provenance tracking

Automation of the research process means that the main steps in the project: transformations of the data – various processing steps and calculations – as well as the visualization steps that lead to the important inferences, are encoded in software and documented in such a way that they can reliably and mechanically be replicated. In other words, the conclusions and illustrations that appear in the article are the result of a set of computational routines, or scripts that can be examined by others, and re-run to reproduce these results.

3.3.2. Availability of software and data

The public availability of the data and software are key components of computational reproducibility. To facilitate its evaluation, we suggest that researchers consider the following series of questions.

3.3.2.1. Data

	Are the data available through an openly accessible database?

	Are the data shared in a commonly used and well-documented file format?

	If community standards exist, are files laid out in the shared database in a manner that conforms with these standards?

	If data are updated, are different versions of the data clearly denoted? If data is processed in your analysis, is the raw data available?

	Is sufficient metadata provided?
If the data are not directly available, for example if the data are too large to share conveniently, or have restrictions related to privacy issues, do you provide sufficient instructions to obtain equivalent data?

3.3.2.2. Software

	Is the software available to download and install?

	Can the software easily be installed on different platforms?

	Does the software have conditions on the use?

	Is the source code available for inspection?

	Is the full history of the source code available for inspection through a publicly available version history?

	Are the dependencies of the software (hardware and software) described properly? Do these dependencies require only a reasonably minimal amount of effort to obtain and use?

3.4. Open reporting of results

Crucial to reproducing a study is providing sufficient details about its execution through reports, papers, lab notebooks, etc. Researchers usually aim to publish their results in journals (or conference proceedings) with the aim to broadly distribute their discoveries. However, the choice of a journal may affect the availability and accessibility of their findings. Open access journals allow readers to access articles (usually online) without requiring any subscription or fees. While open access can take many forms, there are two common types of open access publication:

	green access - the journal charges a subscription fee to readers for access to its contents, but allows the author to post a version of their article (preprint/postprint) on an electronic print website such as arXiv, EPrints Archive, on their own website, or on a institutional repository.

	gold access - the journal does not charge any fees to readers, and makes a freely accessible online version of the article available at the time of publishing. Usually the author pays an article processing charge to enable free access by readers.

Clearly gold access journals provide the easiest and most reliable access to the article. However, since there are no subscription fees to cover publishing costs at gold open access journals and articles, the author is required to pay. Often the amount is over a thousand dollars per article. As a compromise, journals sometimes have an embargo on open access (delayed open access), i.e. there is a period of time during which the article cannot be freely accessed, after which either the journal automatically makes the article available or the authors are allowed to self-archive it.

Green open access is an attractive approach to making articles openly available because it is affordable to both readers and authors. According to a study of a random sample of articles in 2009 (Björk, Welling, Laakso, Majlender, & Guðnason, 2010), approximately 20% of the articles were freely accessible (9.8 % on publishers’ websites and 11.9% elsewhere through search). A more recent larger study (Archambault et al., 2013) indicates that 43% of Scopus indexed papers between 2008 and 2011 were freely available by the end of 2012. It has been also shown that there is a substantial growth in the proportion of available articles. However, there are still many articles which have been given a green light for access, but they have not been self-archived. Thus it is important for authors to understand the journal’s publishing policy and use the available resources (within their field, institution, and beyond) to make their work accessible to a wide audience. Many research-intensive universities, usually via the libraries, provide services to help researchers self-archive their publications.

There are many other methods for sharing research online at different stages of the work (before final results are even available). Preregistration of the hypotheses that are being tested in a study can prevent overly flexible analysis practices and HARKing (hypothesizing after results are known (Kerr, 1998)), which reduce the reproducibility of the results reported. Regular public updates can be achieved through electronic lab notebooks, wiki pages, presentation slides, blog posts, technical reports, preprints, etc. Sharing progress allows for quick dissemination of ideas, easy collaboration, and early detection and correction of flaws. Storing preliminary results and supplementary materials in centralized repositories (preregistration registries, public version control repositories, institutional reports) have potential to improve the discoverability and the availability lifespan of the works. Some important questions researchers can ask when evaluating publishing solutions include:

Taking into account the sustainability and the ease of access of these solutions in the decision process is integral to improving the research reproducibility. There is also empirical evidence that publication in open access promotes the downstream use of the scientific findings, as evidenced by an approximately 10% increase in citations (Hajjem, Harnad, & Gingras, 2006) (and see also http://opcit.eprints.org/oacitation-biblio.html).

3.5. References / Sources

Sources for all the above details include the following:

	The Practice of Reproducible Research [https://www.practicereproducibleresearch.org]

	BITSS 2017 Research Transparency and Reproducibility Training (RT2) - London [https://osf.io/cdfh7/]

	Marjan Bakker, Tilburg University, “Scientific Misconduct and Researcher Degrees of Freedom” [https://mfr.osf.io/render?url=https://osf.io/nrsvu/?action=download%26mode=render]

	Munafò et al. (2017). A manifesto for reproducible science. Nature Human Behaviour [https://www.nature.com/articles/s41562-016-0021]

	Reproducibility and reliability of biomedical research [https://acmedsci.ac.uk/policy/policy-projects/reproducibility-and-reliability-of-biomedical-research]

	A guide to reproducible code in Ecology and Evolution [http://www.britishecologicalsociety.org/publications/guides-to/]

4. Tools and Platforms for Reproducibility and Transparency in research

4.1. R And The History of Reproducible Research

(information from the Data CampL Jupyter And R Markdown [https://www.datacamp.com/community/blog/jupyter-notebook-r])

In his talk [https://channel9.msdn.com/Events/useR-international-R-User-conference/useR2016/Notebooks-with-R-Markdown], J.J Allaire, confirms that the efforts in R itself for reproducible research, the efforts of Emacs to combine text code and input, the Pandoc, Markdown and knitr projects, and computational notebooks have been evolving in parallel and influencing each other for a lot of years. He confirms that all of these factors have eventually led to the creation and development of notebooks for R.

Firstly, computational notebooks have quite a history: since the late 80s, when Mathematica’s front end was released, there have been a lot of advancements. In 2001, Fernando Pérez started developing IPython, but only in 2011 the team released the 0.12 version of IPython was realized. The SageMath project began in 2004. After that, there have been many notebooks. The most notable ones for the data science community are the Beaker (2013), Jupyter (2014) and Apache Zeppelin (2015).

Then, there are also the markup languages and text editors that have influenced the creation of RStudio’s notebook application, namely, Emacs, Markdown, and Pandoc. Org-mode was released in 2003. It’s an editing and organizing mode for notes, planning and authoring in the free software text editor Emacs. Six years later, Emacs org-R was there to provide support for R users. Markdown, on the other hand, was released in 2004 as a markup language that allows you to format your plain text in such a way that it can be converted to HTML or other formats. Fast forward another couple of years, and Pandoc was released. It’s a writing tool and as a basis for publishing workflows.

Lastly, the efforts of the R community to make sure that research can be reproducible and transparent have also contributed to the rise of a notebook for R. 2002, Sweave was introduced in 2002 to allow the embedding of R code within LaTeX documents to generate PDF files. These pdf files combined the narrative and analysis, graphics, code, and the results of computations. Ten years later, knitr was developed to solve long-standing problems in Sweave and to combine features that were present in other add-on packages into one single package. It’s a transparent engine for dynamic report generation in R. Knitr allows any input languages and any output markup languages.

Also in 2012, R Markdown was created as a variant of Markdown that can embed R code chunks and that can be used with knitr to create reproducible web-based reports. The big advantage was and still is that it isn’t necessary anymore to use LaTex, which has a learning curve to learn and use. The syntax of R Markdown is very similar to the regular Markdown syntax but does have some tweaks to it, as you can include, for example, LaTex equations.

4.2. The Open Science Framework

The OSF gives you free accounts for collaboration around files and other research artifacts.

Create an account and log in at: http://osf.io/

Each account can have up to 5 GB of files without any problem, and it remains private until you make it public.

You can add other authorized users as well.

Once you are ready to make the project public, you can do so in two ways:

	you can “freeze” the project for publication (e.g. if you want to make available exactly the data and analysis you put in a paper); this is called registration, and you can give access to just the reviewers, too.

	you can make the entire project public, in which case anyone can browse to it if they know the URL.

You can also cut DOIs for resources so that you can put them in papers.

The OSF is archival (they have a sustainability fund that guarantees their data will remain around for something like 30 years) and many publications will accept them as a place to make data public if you use a registration as above.

4.2.1. Other things the OSF supports

OSF Meetings [https://osf.io/meetings/] - free poster and presentation sharing

OSF for institutions [https://osf.io/search/?q=institutions&filter=institution&page=1ion&page=1] - branded for institutions, with logins/passwords tied into your institutional login.

4.3. Dryad

The Dryad Digital Repository [http://datadryad.org/] (aka Dryad) is a curated resource that makes the data underlying scientific publications discoverable, freely reusable, and citable. Dryad provides a general-purpose home for a wide diversity of datatypes.

Dryad’s vision is to promote a world where research data is openly available, integrated with the scholarly literature, and routinely re-used to create knowledge. They provide the infrastructure for, and promote the re-use of, data underlying the scholarly literature.

Dryad is governed by a nonprofit membership organization. Membership is open to any stakeholder organization, including but not limited to journals, scientific societies, publishers, research institutions, libraries, and funding organizations.

Publishers are encouraged to facilitate data archiving by coordinating the submission of manuscripts with submission of data to Dryad. Learn more about submission integration.

Dryad originated from an initiative among a group of leading journals and scientific societies in evolutionary biology and ecology to adopt a joint data archiving policy (JDAP) for their publications, and the recognition that easy-to-use, sustainable, community-governed data infrastructure was needed to support such a policy.

4.4. Figshare

Figshare [https://figshare.com/] is an online digital repository where researchers can preserve and share their research outputs, including figures, datasets, images, and videos. It is free to upload content and free to access, in adherence to the principle of open data. Figshare is a portfolio company of Digital Science, operated by Macmillan Publishers.

Figshare is a repository where users can make all of their research outputs available in a citable, shareable and discoverable manner. It allows users to upload any file format to be previewed in the browser so that any research output, from posters and presentations to datasets and code, can be disseminated in a way that the current scholarly publishing model does not allow.

4.5. Zenodo

Zenodo [https://zenodo.org/] is derived from Zenodotus, the first librarian of the Ancient Library of Alexandria and father of the first recorded use of metadata, a landmark in library history.

The OpenAIRE project, in the vanguard of the open access and open data movements in Europe was commissioned by the EC to support their nascent Open Data policy by providing a catch-all repository for EC funded research. CERN, an OpenAIRE partner and pioneer in open source, open access and open data, provided this capability and Zenodo was launched in May 2013.

4.6. References / Sources

	ANGUS Lesson: The Open Science Framework [http://angus.readthedocs.io/en/2017/the_osf.html]

5. Jupyter Notebook for Open Science

Jupyter [http://jupyter.org/] notebook is an interactive web application that allows you to type and edit lines of code and see the output. The software requires Python installation, but currently supports interaction with over 40 languages.

5.1. Introduction to Markdown

5.1.1. Jupyter and R Notebooks are types of dynamic documents

Literate programming is the basic idea behind dynamic documents and was proposed by Donald Knuth in 1984. Originally, it was for mixing the source code and documentation of software development together. Today, we will create dynamic documents in which program or analysis code is run to produce output (e.g. tables, plots, models, etc) and then are explained through narrative writing.

The 3 steps of Literate Programming:

	Parse the source document and separate code from narratives.

	Execute source code and return results.

	Mix results from the source code with the original narratives.

So that leaves us, the writers, with 2 steps which includes writing:

	Analysis code

	A narrative to explain the results from the analysis code.

Note #1: R Notebooks and Jupyter notebooks are very similar! They are two sides of the same coin. We suggest that you adopt which ever one makes more sense to you and is in a layout that has a lower barrier for you to learn.

5.2. Markdown

Markdown is a system for writing simple, readable text that is easily converted to HTML. Markdown essentially is two things:

	A plain text formatting syntax

	A software tool written in Perl.

	Converts the plain text formatting into HTML.

Main goal of Markdown:Make the syntax of the raw (pre-HTML) document as readable possible.

Would you rather read this code in HTML?

<body>
 <section>
 <h1>Fresh Berry Salad Recipe</h1>

 Blueberries
 Strawberries
 Blackberries
 Raspberries

 </section>
</body>

Or this code in Markdown?

Fresh Berry Salad Recipe

* Blueberries
* Strawberries
* Blackberries
* Raspberries

If you are human, the Markdown code is definitely easier to read! Let us take a moment to soak in how much easier our lives are/will be because Markdown exists! Thank you John Gruber and Aaron Swartz (RIP) for creating Markdown in 2004!

5.3. So, what is a Jupyter notebook?

In this case, “notebook” or “notebook documents” denote documents that contain both code and rich text elements, such as figures, links, equations, etc. Because of the mix of code and text elements, these documents are the ideal place to bring together an analysis description and its results as well as they can be executed perform the data analysis in real time. These documents are produced by the Jupyter Notebook App [http://jupyter.org/].

As a fun note, “Jupyter” is a loose acronym meaning Julia, Python [https://www.python.org/], and R [https://www.r-project.org/]. These programming languages were the first target languages of the Jupyter application, but nowadays, the notebook technology also supports many other languages [http://github.com/ipython/ipython/wiki/IPython-kernels-for-other-languages].

The main components of the whole Jupyter environment are, on one hand, the notebooks themselves and the application. On the other hand, you also have a notebook kernel (that is the language interpreter that will be executing the code in the background) and a notebook dashboard.

And there you have it: the Jupyter Notebook - there are also several examples of Jupyter notebooks [https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks] that you can see/browse.

5.4. Cool! How do I install Jupyter?

There are the official and detailed installation notes [http://jupyter.readthedocs.io/en/latest/install.html], and you can also have a quick look at step-by-step guide and some references here.

Generally, you’ll need to install Python (which is a prerequisite). The general recommendation is that you use the Anaconda distribution to install both Python and the notebook application.

5.5. Ok, I’m set! What’s next?

After installation, the only thing necessary is to actually start the notebook. This can be done at command line using the following command:

jupyter notebook

After running the command, you will see a bunch of information on the command line window, and at the same time, a new page will open on your browser that will look like the following:

[image: Jupyter File Listing]

There are three main tabs Files, Running and Clusters. You’ll be mostly using the first two (when not in the actual notebook):

	Files: is the listing of your current working directory. When you first launch the notebook, the directory is the same where you launched the app.

	Running: is a list of all active notebooks, i.e. notebooks that have been running commands through one of the available kernels.

	Clusters: this is a listing of all clusters that are available for a back-end execution (will be empty, unless you have connected the Jupyter Notebook app to a cluster)

5.5.1. Creating a Notebook

Creating a Notebook is as straightforward as clicking on the New button on the top right, and selecting the kernel (i.e. the engine that will be interpreting our commands).

Note Jupyter really shines for Python and Julia notebooks. R users usually go the RMarkdown, which is much more optimized for R (as opposed to Jupyter). Eventually however, it all comes down to personal preference (or lab inheritance…)

All notebooks look like this in the beginning:

[image: An empty Jupyter Notebook for R]

You’ll notice the following points:

	There is an In [] section in the middle. This is called a cell and is essentially an interface where you can put your code, text, markdown, etc. Simply put, every cell that is an input is marked as In followed by an increasing number that corresponds to the relative order that the particular cell was executed.

	There is an indication of the current kernel being employed to execute each cell on the top right (in this instance the kernel is R).

	The notebook is still Untitled, but it has already been saved/created as a file (you can have a look at the working directory to verify this). Bear in mind that Jupyter automatically saves (i.e. autosaves) your notebooks, and also creates checkpoints, essentially snapshots of your Notebook that you can go back to (this is not versioning, as it doesn’t capture all changes, just snapshots in time).

After writing some code/text in the currently active cell, the main keyboard command to remember is how to execute the code.

	Shift-Enter: Executes the code and creates a new cell underneath.

	Ctrl-Enter: Executes the code without creating a new cell.

Type the following code into a cell and then hit Shift-Enter.

2 + 3

You will see the following screen (or similar):

[image: Our first R command]

First of all, you may have briefly seen an asterisk after In, i.e. In [*]. The asterisk means that the kernel is currently trying to run the code, so you should be waiting for the output. After successful execution, the * will change to the next number of the Cell (1 in our instance), and the output of the command will be visible below (5 in our case). Finally, as we executed the code with Shift-Enter, a brand new cell has been created for us.

At this point, we can rename our Notebook, by clicking on the Untitled entry, and let’s rename it to Jupyter-is-fun

Well done! You’ve just created you first Jupyter Notebook!

5.5.2. Combining multiple kernels

A Jupyter Notebook can support multiple Kernels at the same time. Let’s try and run a cell using Python 3. Change the cell type to Python 3 (or Python 2 if you have a different version installed), and type:

print("Hello World!")

(if you’re in Python 2, type print "Hello World!")

You’ll notice that the output now is Hello World!, while at the same time, the numbering of the cell has reset to 1 - this is because each kernel recognizes it’s own cells with the order of execution.

Finally, let’s do a quick loop:

elements = ['oxygen', 'nitrogen', 'argon']
for char in elements:
 print(char)

Here, we have created a list of 3 elements, and we assigned the list to a variable aptly named elements. Next, we created a loop structure, where each of the elements in the elements list is assigned to the variable char in turn, and the commands in the loop (i.e. print(char)) is executed for that element. You should see a final output similar to this screen:

[image: Python Loops in Jupyter]

5.5.3. Mingling data, code and text

One of the most powerful things in Jupyter is the fact that you can write both text and code in the same notebook - much like a real Lab notebook where you have your text notes and your equations/figures/etc.

Let’s try and put some text in our notebook. To do that, we need to tell Jupyter that the cell should be interpreted as text (Markdown-formatted) and not as code. Click on the empty cell (it should have a green outline), and then go to Cell -> Cell Type -> Markdown. You will notice that the In [] indicator just disappeared, as there will be no need to execute something (and therefore no output will be produced).

Let’s copy the following text into the cell:

Writing Notebooks

We can write lots of formatted text here, using the [Markdown syntax](https://en.wikipedia.org/wiki/Markdown). It is an easy way to write pretty text easily and efficiently.

Formatting

It does support several common formatting styles:

- It can do **bold**
- It can do _italics_
- It can also do sub lists
 * with items one
 * two
 * and three

It also allows to write [LaTex](https://www.latex-project.org) equations, like that:

$$c = \sqrt{a^2 + b^2}$$

Pretty neat, right?

If you press Shift-Enter after putting this text, it should look like that:

[image: Text and Code]

You’ll also notice that, by default, Jupyter has changed the type of the new cell to R, so you won’t have to change types constantly, but only when needed.

5.5.4. Sharing Notebooks

For more instructions, the Help menu has a good tour and detailed information. Notebooks can be downloaded locally by going to the File menu, then selecting Download and choosing a file type to download, and it supports both pdf and html as file type choices.

You can also share the entire file that you have just created (there should be a file named Jupyter-is-fun.ipynb in your working directory). You can even grab the one we created right now from here.

That’s it!

5.6. The Future of Jupyter

According to the people that created and support Jupyter, it has now ~3 million users worldwide [https://github.com/jupyter/design/blob/master/surveys/2015-notebook-ux/analysis/report_dashboard.ipynb], and over 500k Notebooks on GitHub - so huge success!

The same team is now working on JupyterLab [https://github.com/jupyter/jupyterlab] (currently in alpha), essentially the next generation of the Jupyter Notebook application. You can read more here [http://blog.jupyter.org/2016/07/14/jupyter-lab-alpha/] and also have a look at their recent talk at SciPy2016 [http://archive.ipython.org/media/SciPy2016JupyterLab.pdf]. So, stay tuned!

5.7. Reading material

	Some of the content is from the Data Camp module [https://www.datacamp.com/community/tutorials/tutorial-jupyter-notebook]

	References for learning Python

	http://rosalind.info/problems/locations/

	http://learnpythonthehardway.org/book/

	http://www.learnpython.org/

	http://www.pythontutor.com/visualize.html#mode=edit

5.8. References / Sources

6. R for Reproducible Scientific Analysis (Jupyter)

In this session we assume that there is a basic knowledge of R and it’s syntax. There is also a parallel session running on Data Carpentry for Ecology [https://nioo.knaw.nl/en/open-science-tools] that provides an in-depth presentation of R. The material presented here is based on the following lessons:

	Software Carpentry: Programming with R [http://swcarpentry.github.io/r-novice-inflammation/]

	Software Carpentry: R for Reproducible Scientific Analysis [http://swcarpentry.github.io/r-novice-gapminder/]

	Data Carpentry: R for data analysis and visualization of Ecological Data [http://www.datacarpentry.org/R-ecology-lesson/]

6.1. Data

We will use our new Jupyter environment to analyze the bird ringing data Netherlands 1960-1990 part 1, led by Henk van der Jeugd [https://doi.org/10.17026/dans-2ch-6s6r]. The csv file containing this data available though this workshop is here [https://github.com/fpsom/reproducible-analysis-workshop/raw/master/files/Export_DANS_Parels_van_Datasets_Vogeltrekstation.csv], and the original source is here [https://easy.dans.knaw.nl/ui/datasets/id/easy-dataset:63027].

6.2. Code and document

Let’s try and have an general analysis of the data we downloaded earlier. First, we’ll need to import some libraries that will help us with the analysis process.

Data Analysis Libraries
library(dplyr)
library(tidyr)

[Community Ecology Package](https://cran.r-project.org/web/packages/vegan/index.html)
library(vegan)

Visualization Libraries
library(ggplot2)

6.3. Loading and Cleaning Data

For our first step, we will load the data and then view the top records as well as a summary of all variables included.

dansDataSet <- read.csv(file = "Export_DANS_Parels_van_Datasets_Vogeltrekstation.csv", header = TRUE)

head(dansDataSet)
summary(dansDataSet)

We observe that even though the data was loaded correctly, they are not used in the best possible way. For example, Ringnumber, CatchDate and Age are used as words rather than as numeric values. Also, missing values are defined as NULL which is not recognized as such by R (the correct value would be NA). The next block tidies the data, so that that each attribute is treated as originally intended.

dansDataSet <- data.frame(lapply(dansDataSet, function(x) { gsub("NULL", NA, x) }))

dansDataSet$Ringnumber <- as.numeric(dansDataSet$Ringnumber)
dansDataSet$CatchDate <- as.Date(dansDataSet$CatchDate)
dansDataSet$Age <- as.numeric(dansDataSet$Age)
dansDataSet$Broodsize <- as.numeric(dansDataSet$Broodsize)
dansDataSet$PullusAge <- as.numeric(dansDataSet$PullusAge)
dansDataSet$CatchDate <- as.Date(dansDataSet$CatchDate)

head(dansDataSet)
summary(dansDataSet)

We can see that the data is much more better formatted and useful for further analysis.

6.4. Subsetting our data

Let’s now create a few subsets of the original data. Subset #1 dansDataSet_Castricum will contain all the unique records for which Location is Castricum, Noord-Holland, NL. Then we will group the records by species and catch date, and calculate number of each species in the particular catch date.

dansDataSet_Castricum <- dansDataSet %>%
 filter(Location == "Castricum, Noord-Holland, NL") %>%
 select(unique.RingID = RingID, Species, CatchDate) %>%
 group_by(Species, CatchDate) %>%
 summarise(count = n())

We could further filter this subset for a particular species. For example, the code below will retrieve all unique observations of Northern Lapwing in Castricum, Noord-Holland, NL.

dansDataSet_lapwing <- dansDataSet %>%
 filter(Location == "Castricum, Noord-Holland, NL") %>%
 select(unique.RingID = RingID, Species, CatchDate) %>%
 group_by(Species, CatchDate) %>%
 filter(as.POSIXct(CatchDate) >= as.POSIXct("1970-01-01 00:00:01")) %>%
 filter(Species == "Northern Lapwing") %>%
 summarise(count = n())

Our second subset will create a matrix of the distribution of unique species across the different locations. This will consequently allow us to calculate some diversity indexes.

dansDataSet_distribution <- dansDataSet %>%
 select(unique.RingID = RingID, Species, Location) %>%
 group_by(Species, Location) %>%
 summarise(count = n()) %>%
 filter(count > 0) %>%
 na.omit()

spread(data, key, value)
data: A data frame
key: The (unquoted) name of the column whose values will be used as column headings.
value:The (unquoted) names of the column whose values will populate the cells
dansDataSet_distribution_matrix <- dansDataSet_distribution %>%
 spread(Location, count)

We can also create a more specific subset, i.e. of species that have at least 100 unique observations in a given location. This will allow for a cleaner figure.

dansDataSet_distribution_min100 <- dansDataSet %>%
 select(unique.RingID = RingID, Species, Location) %>%
 group_by(Species, Location) %>%
 summarise(count = n()) %>%
 filter(count > 100) %>%
 na.omit()

6.5. Using the vegan package

We will now use the vegan [https://cran.r-project.org/web/packages/vegan/index.html] package to calculate the diversity in the locations.

6.5.1. Transforming the data to vegan requirements

dansDataSet_distribution_zero <- dansDataSet_distribution_matrix
dansDataSet_distribution_zero[is.na(dansDataSet_distribution_zero)] <- 0
dansDataSet_distribution_zero <- t(dansDataSet_distribution_zero[,2:length(dansDataSet_distribution_zero)])

6.5.2. Calculating diversity: Shannon, Simpson and Inverted Simpson.

For each of these indexes, we are going to call the corresponding function from vegan, using the default parameters:

Shannon or Shannon–Weaver (or Shannon–Wiener) index is defined as:

$$H = -\sum_{n=1}^{R} p_i ln_b(p_i) = 1$$

where p_i is the proportional abundance of species i and b is the base of the logarithm. It is most popular to use natural logarithms, but some argue for base $b = 2$.

Both variants of Simpson’s index are based on $D = \sum_{n=1}^{R}p_i^2$. Choice simpson returns $1-D$ and invsimpson returns $\frac{1}{D}$.

Hshannon <- diversity(dansDataSet_distribution_zero, index = "shannon", MARGIN = 1, base = exp(1))
simp <- diversity(dansDataSet_distribution_zero, "simpson", MARGIN = 1)
invsimp <- diversity(dansDataSet_distribution_zero, "inv", MARGIN = 1)

6.5.3. Calculating species richness

The function rarefy gives the expected species richness in random subsamples of size sample from the community. The size of sample should be smaller than total community size, but the function will silently work for larger sample as well and return non-rarefied species richness (and standard error equal to 0). If sample is a vector, rarefaction is performed for each sample size separately. Rarefaction can be performed only with genuine counts of individuals. The function rarefy is based on Hurlbert’s (1971) formulation, and the standard errors on Heck et al. (1975).

r.2 <- rarefy(dansDataSet_distribution_zero, 2)

6.5.4. Calculating fisher.alpha

This function estimates the a parameter of Fisher’s logarithmic series. The estimation is possible only for genuine counts of individuals. The function can optionally return standard errors of a. These should be regarded only as rough indicators of the accuracy: the confidence limits of a are strongly non-symmetric and the standard errors cannot be used in Normal inference.

alpha <- fisher.alpha(dansDataSet_distribution_zero)

6.5.5. Richness and Evenness

Species richness (S) is calculated by specnumber which finds the number of species. If MARGIN is set to 2, it finds frequencies of species. Pielou’s evenness (J) is calculated by $\frac{H_shannon}{log(S)}$.

S <- specnumber(dansDataSet_distribution_zero, MARGIN = 1) ## rowSums(BCI > 0) does the same...
J <- Hshannon/log(S)

In order to have all these indeces together, we will put them in a single data frame as follows:

metrics <- data.frame(
 H_Shannon = Hshannon,
 H_Simp = simp,
 H_Inv_Simp = invsimp,
 rarefy = r.2,
 a = alpha,
 richness = S,
 evenness = J
)

6.6. Results

Finally, let’s also create some plots. First of all, let’s create a plot based on our first subset, showing for each species and capture dates, the average age of the species captured.

png("files/figs/subset1a1.png", width = 4000, height = 2000, res = 300, pointsize = 5)
ggplot(data=dansDataSet_Castricum, aes(x=CatchDate, y=Species, color=count)) +
 geom_point(aes(size=count))
dev.off()

[image:]

png("files/figs/subset1a2.png", width = 4000, height = 2000, res = 300, pointsize = 5)
ggplot(data=dansDataSet_Castricum, aes(x=CatchDate, y=count, colour=Species)) +
 geom_line()
dev.off()

[image:]

We can do the same plots for the single species that we looked into earlier (Northern Lapwing in Castricum, Noord-Holland, NL).

png("files/figs/subset1b1.png", width = 4000, height = 2000, res = 300, pointsize = 5)
ggplot(data=dansDataSet_lapwing, aes(x=CatchDate, y=Species, color=count)) +
 geom_point(aes(size=count))
dev.off()

[image:]

This is not really easy to interpret. However, we can now have a more interesting plot with the lines command, including a smoothing curve to show the overall trend:

png("files/figs/subset1b2.png", width = 4000, height = 2000, res = 300, pointsize = 5)
ggplot(data=dansDataSet_lapwing, aes(x=CatchDate, y=count, colour=Species)) +
 geom_point(aes(x = CatchDate, y = count, colour = Species), size = 3) +
 stat_smooth(aes(x = CatchDate, y = count), method = "lm", formula = y ~ poly(x, 3), se = FALSE)
dev.off()

[image: _First subset plot: Northern Lapwin lines]

We can also create a plot based on the second subset. In this case, let’s see how the distribution of species across the seven locations looks like.

lvls <- unique(as.vector(dansDataSet_distribution$Location))
png("files/figs/subset2a.png", width = 4000, height = 2000, res = 300, pointsize = 5)
ggplot(data=dansDataSet_distribution, aes(x=Species, y=Location, color=Species)) +
 geom_point(aes(size=count)) +
 theme(text=element_text(family="Arial", size=12*(81/169)),
 axis.text.x = element_text(angle = 90, hjust = 1, vjust=0.3)) +
 scale_y_discrete(breaks=lvls[seq(1,length(lvls),by=10)]) #scale_y_discrete(labels = abbreviate)
dev.off()

[image:]

This is a very “dense” figure, so let’s use the filtered version to see the most highly populated species.

png("files/figs/subset2b.png", width = 4000, height = 2000, res = 300, pointsize = 5)
ggplot(data=dansDataSet_distribution_min100, aes(x=Species, y=Location, color=Species)) +
 geom_point(aes(size=count)) +
 theme(text=element_text(family="Arial", size=12*(81/169)),
 axis.text.x = element_text(angle = 90, hjust = 1, vjust=0.3))
dev.off()

[image:]

Finally, let’s have a figure showing all 5 indexes together.

png("files/figs/metrics.png", width = 4000, height = 2000, res = 300, pointsize = 5)
plot(metrics, pch="+", col="blue")
dev.off()

[image:]

We could also show the most diverse sites (i.e. richness index over 10).

top10_site_metrics <- metrics %>%
 tibble::rownames_to_column() %>%
 filter(richness >= 10) %>%
 arrange(desc(richness))

top10_site_metrics

6.7. Conclusions

Jupyter and R is awesome! You can also download the entire Jupyter Notebook from here [https://github.com/fpsom/reproducible-analysis-workshop/raw/master/files/Reproducible-analysis-and-Research-Transparency.ipynb]

6.8. References / Sources

	Software Carpentry: Programming with R [http://swcarpentry.github.io/r-novice-inflammation/]

	Software Carpentry: R for Reproducible Scientific Analysis [http://swcarpentry.github.io/r-novice-gapminder/]

	Data Carpentry: R for data analysis and visualization of Ecological Data [http://www.datacarpentry.org/R-ecology-lesson/]

7. R for Reproducible Scientific Analysis (RMarkdown / knitr)

During this lesson, you’ll learn how to use RMarkdown for reproducible data analysis. We will work with the same data as with the Jupyter session: bird ringing data Netherlands 1960-1990 part 1, led by Henk van der Jeugd [https://doi.org/10.17026/dans-2ch-6s6r], with the csv file containing this data here, and the original source here [https://easy.dans.knaw.nl/ui/datasets/id/easy-dataset:63027].

This lesson is heavily based on the Exploratory RNAseq data analysis using RMarkdown [http://angus.readthedocs.io/en/2017/rmarkdown_rnaseq.html] lesson from the workshop ANGUS: Analyzing High Throughput Sequencing Data [http://ivory.idyll.org/dibsi/ANGUS.html]. As a session, it will get you started with RMarkdown, but if you want more, here [https://rpubs.com/marschmi/RMarkdown] is a great tutorial.

7.1. RMarkdown

RMarkdown is a variant of Markdown that makes it easy to create dynamic documents, presentations and reports within RStudio. It has embedded R (originally), python, perl, shell code chunks to be used with knitr (an R package) to make it easy to create reproducible reports in the sense that they can be automatically regenerated when the underlying code it modified.

RMarkdown renders many different types of files including:

	HTML

	PDF

	Markdown

	Microsoft Word

	Presentations:

	Fancy HTML5 presentations:

	ioslides

	Slidy

	Slidify

	PDF Presentations:

	Beamer

	Handouts:

	Tufte Handouts

	HTML R Package Vignettes

	Even Entire Websites!

[image: Rmd output]

7.1.1. A few step workflow

Briefly, to make a report:

	Open a .Rmd file.

	Create a YAML header (more on this in a minute!)

	Write the content with RMarkdown syntax.

	Embed the R code in code chunks or inline code.

	Render the document output.

[image: Workflow for creating a report]

Overview of the steps RMarkdown takes to get to the rendered document:

	Create .Rmd report that includes R code chunks and and markdown narratives (as indicated in steps above.).

	Give the .Rmd file to knitr to execute the R code chunks and create a new .md file.

	Knitr [http://yihui.name/knitr/] is a package within R that allows the integration of R code into rendered RMarkdown documents such as HTML, latex, pdf, word, among other document types.

	Give the .md file to pandoc, which will create the final rendered document (e.g. html, Microsoft word, pdf, etc.).

	Pandoc [http://pandoc.org/] is a universal document converter and enables the conversion of one document type (in this case: .Rmd) to another (in this case: HTML)

[image: How an Rmd document is rendered]

While this may seem complicated, we can hit the knit button at the top of the page. Knitting is the verb to describe the combining of the code chunks, inline code, markdown and narrative.

Note: Knitting is different from rendering! Rendering refers to the writing of the final document, which occurs after knitting.

7.2. Creating a .Rmd File

It’s go time! Let’s start working with RMarkdown! In the menu bar, click File -> New File -> RMarkdown

7.3. Anatomy of Rmarkdown file

4 main components:

	YAML headers

	Narrative/Description of your analysis

	Code

a. Inline Codeb. Code Chunks

7.3.1. 1. YAML Headers

YAML stands for “Yet Another Markup Language” or “Yaml ain’t markup language” and is a nested list structure that includes the metadata of the document. It is enclosed between two lines of three dashes --- and as we saw above is automatically written by RStudio. A simple example:

title: "Reproducible analysis and Research Transparency"
Author: "Fotis E. Psomopoilos"
date: "December 8th, 2017"
output: html_document

The above example will create an HTML document. However, the following options are also available.

	html_document

	pdf_document

	word_document

	beamer_presentation (pdf slideshow)

	ioslides_presentation (HTML slideshow)

	and more…

Today, we will create HTML files. Presentation slides take on a slightly different syntax (e.g. to specify when one slide ends and the next one starts) and so please note that there is a bit of markdown syntax specific to presentations.

7.3.2. 2. Narrative/Description of your analysis

For this section of the document, you will use markdown to write descriptions of whatever the document is about. For example, you may write your abstract, introduction, or materials and methods to set the stage for the analysis to come in code chunks later on.

7.3.3. 3. Code

There are 2 ways to embed code within an RMarkdown document.

	Inline Code: Brief code that takes place during the written part of the document.

	Code Chunks: Parts of the document that includes several lines of program or analysis code. It may render a plot or table, calculate summary statistics, load packages, etc.

7.3.4. a. Inline R Code

Inline code is created by using a back tick (the key next to the #1) (`) and the letter r followed by another back tick.

	For example: $$2^{11}$$ is `r 2^11`.

Imagine that you’re reporting a p-value and you do not want to go back and add it every time the statistical test is re-run. Rather, the p-value is 0.0045.

This is really helpful when writing up the results section of a paper. For example, you may have ran a bunch of statistics for your scientific questions and this would be a way to have R save that value in a variable name.

Cool, huh?!

7.3.5. b. Code Chunks

Code chunks can be used to render code output into documents or to display code for illustration. The code chunks can be in shell/bash, python, Rcpp, SQL, or Stan.

The Anatomy of a code chunk:

To insert an R code chunk, you can type it manually by typing ```{r} followed by ``` on the next line. This will produce the following code chunk:

```{r}
n <- 10
seq(n)
```


Name the code chunk something meaningful as to what it is doing. Below I have named the code chunk 10_random_numbers:

```{r 10_random_numbers}
n <- 10
seq(n)
```


The code chunk input and output is then displayed as follows:

n = 10
seq(n)

Always name/label your code chunks!

7.4. Chunk Labels

Chunk labels must be unique IDs in a document and are good for:

	Generating external files such as images and cached documents.

	Chunk labels often are output when errors arise (more often for line of code).

	Navigating throughout long .Rmd documents.

When naming the code chunk: Use - or _ in between words for code chunks labels instead of spaces. This will help you and other users of your document to navigate through.

Chunk labels must be unique throughout the document (if not there will be an error) and the label should accurately describe what’s happening in the code chunk.

7.5. Chunk Options

Pressing tab when inside the braces will bring up code chunk options.

[image: Some Knitr Chunk Options]

	results = "asis" stands for “as is” and will output a non-formatted version.

	collapse is another chunk option which can be helpful. If a code chunk has many short R expressions with some output, you can collapse the output into a chunk.

There are too many chunk options to cover here. After the workshop take a look around at the options.

Great website for exploring Knitr Chunk Options.

7.5.1. Figures

Knitr makes producing figures really easy. If analysis code within a chunk is supposed to produce a figure, it will just print out into the document.

Some knitr chunk options that relate to figures:

	fig.width and fig.height

	Default: fig.width = 7, fig.height = 7

	fig.align: How to align the figure

	Options include: "left", "right", and "center"

	fig.path: A file path to the directory to where knitr should store the graphic output created by the chunk.

	Default: 'figure/'

	There’s even a fig.retina(only for HTML output) for higher figure resolution with retina displays.

7.6. Global Chunk Options

You may wish to have the same chunk settings throughout your document and so it might be nice to type options once instead of always re-typing it for each chunk. To do so, you can set global chunk options at the top of the document.

knitr::opts_chunk$set(echo = FALSE,
 eval = TRUE,
 message = FALSE,
 warning = FALSE,
 fig.path = "Figures/",
 fig.width = 12,
 fig.height = 8)

For example, if you’re working with a collaborator who does not want to see the code - you could set eval = TRUE and echo = FALSE so the code is evaluated but not shown. In addition, you may want to use message = FALSE and warning = FALSE so your collaborator does not see any messages or warnings from R.

If you would like to save and store figures within a sub directory within the project, fig.path = "Figures/". Here, the "Figures/" denotes a folder named Figures within the current directory where the figures produced within the document will be stored. Note: by default figures are not saved.

Global chunk options will be set for the rest of the document. If you would like to have a particular chunk be different from the global options, specify at the beginning of that particular chunk.

7.7. Tables

Hand writing tables in Markdown can get tedious. We will not go over this here, however, if you’d like to learn more about Markdown tables check out the documentation on tables at the RMarkdown v2 website.

In his Knitr in a Knutshell, Dr. Karl Broman introduces: kable, pander, and xtable and many useRs like the first two:

	kable: Within the knitr package - not many options but looks nice with ease.

	pander: Within the pander package - has many more options and customization. Useful for bold-ing certain values (e.g. values below a threshold).

You should also check out the DT package for interactive tables. Check out more details here http://www.htmlwidgets.org/showcase_datatables.html

7.8. Citations and Bibliography

7.9. Bibliography

It’s also possible to include a bibliography file in the YAML header. Bibliography formats that are readable by Pandoc include the following:

	Format: File extension

	MOD: .mods

	BibLaTeX: .bib

	BibTeX: .bibtex

	RIS: .ris

	EndNote: .enl

	EndNote XML: .xml

	ISI: .wos

	MEDLINE: .medline

	Copac: .copac

	JSON citeproc: .json

To create a bibliography in RMarkdown, two files are needed:

	A bibliography file with the information about each reference.

	A citation style language (CSL) to describe how to format the reference

An example YAML header with a bibliography and a citation style language (CSL) file:

output: html_document
bibliography: bibliography.bib
csl: nature.csl

Check out the very helpful web page by the R Core team on bibliographies and citations [http://rmarkdown.rstudio.com/authoring_bibliographies_and_citations.html].

If you would like to cite R packages, knitr even includes a function called write_bib() that creates a .bib entries for R packages. It will even write it to a file!

write_bib(file = "r-packages.bib") # will write all packages
write_bib(c("knitr", "ggplot2"), file = "r-packages2.bib") # Only writes knitr and ggplot2 packages

7.10. Placement

Automatically the bibliography will be placed at the end of the document. Therefore, you should finish your .Rmd document with # References so the bibliography comes after the header for the bibliography.

final words...

References

7.11. Citation Styles

Citation Style Language (CSL) is an XML-based language that identifies the format of citations and bibliographies. Reference management programs such as Zotero, Mendeley and Papers all use CSL.

Search for your favorite journal and CSL in the Zotero Style Repository [https://www.zotero.org/styles], which currently has >8,000 CSLs. Is there a style that you’re looking for that is not there?

output: html_document
bibliography: bibliography.bib
csl: nature.csl

7.12. Citations

Citations go inside square brackets []and are separated by semicolons ;. Each citation must have a key, composed of @ + the citation identifier from the database, and may optionally have a prefix, a locator, and a suffix. To check what the citation key is for a reference, take a look at the .bib file. Here in this file, you can also change key for each reference. However, be careful that each ID is unique!

7.13. Publishing on RPubs

Once you make a beautiful dynamic document you may wish to share it with others. One option to share it with the world is to host it on RPubs [https://rpubs.com/]. With RStudio, this makes it very easy! Do the following:

	Create your awesome .Rmd document.

	Click the knit button to render your HTML document to be published.

	In the top right corner of the preview window, click the publish button and follow the directions.

	Note: You will need to create an RPubs profile.

	Once you have a profile you can choose the following:

	The title of the document.

	A description of the document.

	The URL in which the website will be hosted.

	Note: The beginning of the URL will be: www.rpubs.com/your_username/name_of_your_choice

Yay!

7.14. Amazing Resources for learning Rmarkdown

	The RMarkdown [http://rmarkdown.rstudio.com/index.html] website hosted by RStudio.

	Dr. Yuhui Xie’s book: Dynamic Documents with R and Knitr [http://www.amazon.com/Dynamic-Documents-knitr-Chapman-Hall/dp/1482203537] 2^nd^ Edition [@Xie2015] and his Knitr website [http://yihui.name/knitr/].

	A BIG thank you to Dr. Xie for writing the Knitr Package!!

	Dr. Karl Broman’s Knitr in a Knutshell [http://kbroman.org/knitr_knutshell/].

	Cheatsheets [https://www.rstudio.com/resources/cheatsheets/] released by RStudio.

7.15. References / Sources

	Exploratory RNAseq data analysis using RMarkdown [http://angus.readthedocs.io/en/2017/rmarkdown_rnaseq.html]

	ANGUS: Analyzing High Throughput Sequencing Data [http://ivory.idyll.org/dibsi/ANGUS.html].

	RMarkdown [https://rpubs.com/marschmi/RMarkdown]

8. Versioning with Git

8.1. Software Carpentry source lesson

8.2. Automated Version Control

We’ll start by exploring how version control can be used to keep track of what one person did and when. Even if you aren’t collaborating with other people, automated version control is much better than this situation:

[image: Piled Higher and Deeper by Jorge Cham, http://www.phdcomics.com/comics/archive_print.php?comicid=1531]

“Piled Higher and Deeper” by Jorge Cham, http://www.phdcomics.com

We’ve all been in this situation before: it seems ridiculous to have multiple nearly-identical versions of the same document. Some word processors let us deal with this a little better, such as Microsoft Word’s Track Changes [https://support.office.com/en-us/article/Track-changes-in-Word-197ba630-0f5f-4a8e-9a77-3712475e806a], Google Docs’ version history [https://support.google.com/docs/answer/190843?hl=en], or LibreOffice’s Recording and Displaying Changes [https://help.libreoffice.org/Common/Recording_and_Displaying_Changes].

Version control systems start with a base version of the document and then save just the changes you made at each step of the way. You can think of it as a tape: if you rewind the tape and start at the base document, then you can play back each change and end up with your latest version.

[image: Changes Are Saved Sequentially]

Once you think of changes as separate from the document itself, you can then think about “playing back” different sets of changes onto the base document and getting different versions of the document. For example, two users can make independent sets of changes based on the same document.

[image: Different Versions Can be Saved]

Unless there are conflicts, you can even play two sets of changes onto the same base document.

[image: Multiple Versions Can be Merged]

A version control system is a tool that keeps track of these changes for us and helps us version and merge our files. It allows you to decide which changes make up the next version, called a commit and keeps useful metadata about them. The complete history of commits for a particular project and their metadata make up a repository. Repositories can be kept in sync across different computers facilitating collaboration among different people.

The Long History of Version Control Systems

Automated version control systems are nothing new. Tools like RCS, CVS, or Subversion have been around since the early 1980s and are used by many large companies. However, many of these are now becoming considered as legacy systems due to various limitations in their capabilities. In particular, the more modern systems, such as Git and Mercurial [http://swcarpentry.github.io/hg-novice/] are distributed, meaning that they do not need a centralized server to host the repository. These modern systems also include powerful merging tools that make it possible for multiple authors to work within the same files concurrently.

8.3. How can version control help me make my work more open?

The opposite of “open” isn’t “closed”.
The opposite of “open” is “broken”.

— John Wilbanks

Free sharing of information might be the ideal in science, but the reality is often more complicated. Normal practice today looks something like this:

	A scientist collects some data and stores it on a machine that is occasionally backed up by her department.

	She then writes or modifies a few small programs (which also reside on her machine) to analyze that data.

	Once she has some results, she writes them up and submits her paper. She might include her data—a growing number of journals require this—but she probably doesn’t include her code.

	Time passes.

	The journal sends her reviews written anonymously by a handful of other people in her field. She revises her paper to satisfy them, during which time she might also modify the scripts she wrote earlier, and resubmits.

	More time passes.

	The paper is eventually published. It might include a link to an online copy of her data, but the paper itself will be behind a paywall: only people who have personal or institutional access will be able to read it.

For a growing number of scientists, though, the process looks like this:

	The data that the scientist collects is stored in an open access repository like figshare [http://figshare.com/] or Zenodo [http://zenodo.org], possibly as soon as it’s collected, and given its own Digital Object Identifier [https://en.wikipedia.org/wiki/Digital_object_identifier] (DOI). Or the data was already published and is stored in Dryad [http://datadryad.org/].

	The scientist creates a new repository on GitHub to hold her work.

	As she does her analysis, she pushes changes to her scripts (and possibly some output files) to that repository. She also uses the repository for her paper; that repository is then the hub for collaboration with her colleagues.

	When she’s happy with the state of her paper, she posts a version to arXiv [http://arxiv.org/] or some other preprint server to invite feedback from peers.

	Based on that feedback, she may post several revisions before finally submitting her paper to a journal.

	The published paper includes links to her preprint and to her code and data repositories, which makes it much easier for other scientists to use her work as starting point for their own research.

This open model accelerates discovery: the more open work is, the more widely it is cited and re-used [http://dx.doi.org/10.1371/journal.pone.0000308]. However, people who want to work this way need to make some decisions about what exactly “open” means and how to do it. You can find more on the different aspects of Open Science in this book [http://link.springer.com/book/10.1007/978-3-319-00026-8].

This is one of the (many) reasons we teach version control. When used diligently, it answers the “how” question by acting as a shareable electronic lab notebook for computational work:

	The conceptual stages of your work are documented, including who did what and when. Every step is stamped with an identifier (the commit ID) that is for most intents and purposes unique.

	You can tie documentation of rationale, ideas, and other intellectual work directly to the changes that spring from them.

	You can refer to what you used in your research to obtain your computational results in a way that is unique and recoverable.

	With a distributed version control system such as Git, the version control repository is easy to archive for perpetuity, and contains the entire history.

Making Code Citable

This short guide [https://guides.github.com/activities/citable-code/] from GitHub explains how to create a Digital Object Identifier (DOI) for your code, your papers, or anything else hosted in a version control repository.

8.4. Storing our newly created Jupyter file to GitHub

8.4.1. Creating a repository

The folder that currently contains our Jupyter notebook and the data file should look like this:

$ ls -la
total 18756
drwxr-xr-x 1 fpsom 197609 0 Nov 16 14:09 ./
drwxr-xr-x 1 fpsom 197609 0 Nov 16 14:08 ../
-rw-r--r-- 1 fpsom 197609 19034567 Oct 22 03:18 Export_DANS_Parels_van_Datasets_Vogeltrekstation.csv
-rw-r--r-- 1 fpsom 197609 152229 Nov 16 13:52 Reproducible-analysis-and-Research-Transparency.ipynb

Then we tell Git to make this folder a repository — a place where Git can store versions of our files:

git init

If we use ls to show the directory’s contents, it appears that nothing has changed. But if we add the -a flag to show everything, we can see that Git has created a hidden directory within planets called .git:

total 18760
drwxr-xr-x 1 fpsom 197609 0 Nov 16 14:11 ./
drwxr-xr-x 1 fpsom 197609 0 Nov 16 14:08 ../
drwxr-xr-x 1 fpsom 197609 0 Nov 16 14:11 .git/
-rw-r--r-- 1 fpsom 197609 19034567 Oct 22 03:18 Export_DANS_Parels_van_Datasets_Vogeltrekstation.csv
-rw-r--r-- 1 fpsom 197609 152229 Nov 16 13:52 Reproducible-analysis-and-Research-Transparency.ipynb

Git stores information about the project in this special sub-directory. If we ever delete it, we will lose the project’s history.

We can check that everything is set up correctly by asking Git to tell us the status of our project. It shows that there are two new files that are currently not tracked (meaning that any changes there will not be monitored).

git status

On branch master

No commits yet

Untracked files:
 (use "git add <file>..." to include in what will be committed)

 Export_DANS_Parels_van_Datasets_Vogeltrekstation.csv
 Reproducible-analysis-and-Research-Transparency.ipynb

nothing added to commit but untracked files present (use "git add" to track)

8.4.2. Our first commit

The untracked files message means that there’s a file in the directory that Git isn’t keeping track of. We can tell Git to track a file using git add:

git add Export_DANS_Parels_van_Datasets_Vogeltrekstation.csv Reproducible-analysis-and-Research-Transparency.ipynb

and then check that the right thing happened:

git status
On branch master

No commits yet

Changes to be committed:
 (use "git rm --cached <file>..." to unstage)

 new file: Export_DANS_Parels_van_Datasets_Vogeltrekstation.csv
 new file: Reproducible-analysis-and-Research-Transparency.ipynb

Git now knows that it’s supposed to keep track of these two files, but it hasn’t recorded these changes as a commit yet. To get it to do that, we need to run one more command:

git commit -m "Let's add the two files"

[master (root-commit) 8dde99b] Let's add the two files
2 files changed, 67898 insertions(+)
create mode 100644 Export_DANS_Parels_van_Datasets_Vogeltrekstation.csv
create mode 100644 Reproducible-analysis-and-Research-Transparency.ipynb

When we run git commit, Git takes everything we have told it to save by using git add and stores a copy permanently inside the special .git directory. This permanent copy is called a commit (or revision) and its short identifier is f22b25e (Your commit may have another identifier.)

We use the -m flag (for “message”) to record a short, descriptive, and specific comment that will help us remember later on what we did and why. If we just run git commit without the -m option, Git will launch nano (or whatever other editor we configured as core.editor) so that we can write a longer message.

Good commit messages start with a brief (<50 characters) summary of changes made in the commit. If you want to go into more detail, add a blank line between the summary line and your additional notes.

If we run git status now:

git status

On branch master
nothing to commit, working tree clean

This is the first steps in maintaining versions. There are a few more commands that you should be aware of, such as git diff and git log, but for the purposes of this exercise, this is sufficient.

8.4.3. Pushing our Jupyter notebook to GitHub

Version control really comes into its own when we begin to collaborate with other people. We already have most of the machinery we need to do this; the only thing missing is to copy changes from one repository to another.

Systems like Git allow us to move work between any two repositories. In practice, though, it’s easiest to use one copy as a central hub, and to keep it on the web rather than on someone’s laptop. Most programmers use hosting services like GitHub [http://github.com/], BitBucket [http://bitbucket.org/] or GitLab [http://gitlab.com/] to hold those master copies; we’ll explore the pros and cons of this in the final section of this lesson.

Let’s start by sharing the changes we’ve made to our current project with the world. Log in to GitHub, then click on the icon in the top right corner to create a new repository called reproducibilityWorkshop. As soon as the repository is created, GitHub displays a page with a URL and some information on how to configure your local repository.

The next step is to connect the two repositories; the local and the one we just created on GitHub. We do this by making the GitHub repository a remote for the local repository. The home page of the repository on GitHub includes the string we need to identify it:

	Click on the ‘HTTPS’ link to change the protocol from SSH to HTTPS.

	Copy that URL from the browser, go into the local repository, and run this command:

git remote add origin https://github.com/fpsom/reproducibilityWorkshop.git

Make sure to use the URL for your repository rather than mine: the only difference should be your username instead of fpsom.

We can check that the command has worked by running git remote -v:

git remote -v
origin https://github.com/fpsom/reproducibilityWorkshop.git (fetch)
origin https://github.com/fpsom/reproducibilityWorkshop.git (push)

The name origin is a local nickname for your remote repository. We could use something else if we wanted to, but origin is by far the most common choice.

Once the nickname origin is set up, this command will push the changes from our local repository to the repository on GitHub:

git push origin master

Counting objects: 4, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (4/4), done.
Writing objects: 100% (4/4), 1.02 MiB | 338.00 KiB/s, done.
Total 4 (delta 0), reused 0 (delta 0)
To https://github.com/fpsom/reproducibilityWorkshop.git
* [new branch] master -> master

Excellent job! You now have both the remote and the local repositories in sync!

Exercise: Make a change to one of the two local files, commit, and push.

8.5. References / Sources

	Software Carpentry: Version Control with Git [http://swcarpentry.github.io/git-novice/]

9. Docker and Reproducibility

As computational work becomes more and more integral to many aspects of scientific research, computational reproducibility has become an issue of increasing importance to computer systems researchers and domain scientists alike. Though computational reproducibility seems more straight forward than replicating physical experiments, the complex and rapidly changing nature of computer environments makes being able to reproduce and extend such work a serious challenge.

Studies focusing on code that has been made available with scientific publications regularly find the same common issues that pose substantial barriers to reproducing the original results or building on that code:

	“Dependency Hell”

	Imprecise documentation

	Code rot

	Barriers to adoption and reuse in existing solutions

9.1. Docker

Docker is an open source project that builds on many long familiar technologies from operating systems research: LXC containers, virtualization of the OS, and a hash-based or git-like versioning and differencing system, among others.

	Docker images: resolving “Dependency Hell”

	Dockerfiles: Resolving imprecise documentation

	Tackling code-rot with image versions

	Barriers to adoption and re-use

Containers are a way to package software in a format that can run isolated on a shared operating system. Unlike VMs, containers do not bundle a full operating system - only libraries and settings required to make the software work are needed. This makes for efficient, lightweight, self-contained systems and guarantees that software will always run the same, regardless of where it’s deployed

Docker is a wonderful tool for many things. A few of them are;

	As a version control system for your entire app’s operating system by storing each configuration as a central build.

	To distribute/collaborate our app’s operating system with our team.

	To run your code on your laptop in the same environment as you have on your server.

We are going to explore Docker images. Why we should use them, and how to go about it.

9.2. When to build a Docker image

Docker images are used to configure and distribute application states. Think of it as a template with which to create the container.

With a Docker image, we can quickly spin up containers with the same configuration. We can then share these images with our team, so we will all be running containers which all have the same configuration.

There are several ways to create Docker images, but the best way is to create a Dockerfile and use the docker build command.

9.3. Distributing a Docker Image

There are several ways to distribute our images.

	With a tar archive

	Using Docker Hub

	Other methods

	If our Dockerfile is hosted on Github or Bitbucket, we can configure an automated build on Docker Hub.

	We can deploy our own docker registry and push/pull images to it instead of Docker Hub.

9.4. Running a Docker image

Once we have our image on the machine, we can then run it using

docker pull fpsom/jupyter-kernels
docker run --name=jupyter fpsom/jupyter-kernels

The above command will spin up a new container based on our image and run it. If we do not pass the --name parameter, Docker will pick a random name for our container.

Many images require some extra parameters to be passed to the run command, so take some time to read through the documentation of an image before you use it.

Also, take some time to read the full documentation of the docker run command [https://docs.docker.com/engine/reference/run/].

We can see our running containers using the docker ps command. To see ALL containers, we add the -a flag - docker ps -a.

9.5. Jupyter, Docker, MyBinder

For our case, we will use MyBinder as the host of our Jupyter Notebook, so that anyone can run (and therefore reproduce) our code.

Binder allows you to create custom computing environments that can be shared and used by many remote users.

Binder makes it simple to generate reproducible computing environments from a GitHub repository. Binder uses the BinderHub technology to generate a Docker image from this repository. The image will have all the components that you specify along with the Jupyter Notebooks inside. You will be able to share a URL with users that can immediately begin interacting with this environment via the cloud.

If you or another Binder user clicks on a Binder link, the mybinder.org deployment will run the linked repository. While running, you are guaranteed to have at least 1G of RAM. There is an upper-limit of 4GB (if you use more than 4GB your kernel will be restarted).

By default, Binder works on Python; however, given that our notebook is based on R, we need to define the execution environment. This will be done through a dedicated Dockerfile that will setup R and the R Kernel, as well as install the necessary libraries (the version below is based on the Dockerfile provided by binder [https://github.com/binder-examples/dockerfile-r]).

FROM rocker/tidyverse:3.4.2

RUN apt-get update && \
 apt-get -y install python3-pip && \
 pip3 install --no-cache-dir notebook==5.2 && \
 apt-get purge && \
 apt-get clean && \
 rm -rf /var/lib/apt/lists/*

ENV NB_USER rstudio
ENV NB_UID 1000
ENV HOME /home/rstudio
WORKDIR ${HOME}

USER ${NB_USER}

Set up R Kernel for Jupyter
RUN R --quiet -e "install.packages(c('repr', 'IRdisplay', 'evaluate', 'crayon', 'pbdZMQ', 'devtools', 'uuid', 'digest', 'vegan'))"
RUN R --quiet -e "devtools::install_github('IRkernel/IRkernel')"
RUN R --quiet -e "IRkernel::installspec()"

Make sure the contents of our repo are in ${HOME}
COPY . ${HOME}
USER root
RUN chown -R ${NB_UID}:${NB_UID} ${HOME}
USER ${NB_USER}

Run install.r if it exists
RUN if [-f install.r]; then R --quiet -f install.r; fi

Copy the above commands in an empty file named Dockerfile - you can also download this file directly from here [https://github.com/fpsom/reproducible-analysis-workshop/raw/master/files/Dockerfile]. Then add this file to the GitHub repository, using the git commands (i.e. git add, git commit and git push).

Finally, go to the MyBinder URL, paste the URL of your GitHub repository in the field GitHub repo or URL and click launch. In a few minutes, your custom Jupyter environment will be launched.

9.6. References / Sources

	Carl Boettiger (2015), An introduction to Docker for reproducible research, with examples from the R environment, ACM SIGOPS Operating Systems Review, Special Issue on Repeatability and Sharing of Experimental Artifacts. 49(1), 71-79, doi: 10.1145/2723872.2723882 [https://arxiv.org/abs/1410.0846]

Index

creative commons

Attribution 4.0 International

Creative Commons Corporation (“Creative Commons”) is not a law firm and does not provide legal services or legal advice. Distribution of Creative Commons public licenses does not create a lawyer-client or other relationship. Creative Commons makes its licenses and related information available on an “as-is” basis. Creative Commons gives no warranties regarding its licenses, any material licensed under their terms and conditions, or any related information. Creative Commons disclaims all liability for damages resulting from their use to the fullest extent possible.

Using Creative Commons Public Licenses

Creative Commons public licenses provide a standard set of terms and conditions that creators and other rights holders may use to share original works of authorship and other material subject to copyright and certain other rights specified in the public license below. The following considerations are for informational purposes only, are not exhaustive, and do not form part of our licenses.

	Considerations for licensors: Our public licenses are intended for use by those authorized to give the public permission to use material in ways otherwise restricted by copyright and certain other rights. Our licenses are irrevocable. Licensors should read and understand the terms and conditions of the license they choose before applying it. Licensors should also secure all rights necessary before applying our licenses so that the public can reuse the material as expected. Licensors should clearly mark any material not subject to the license. This includes other CC-licensed material, or material used under an exception or limitation to copyright. More considerations for licensors [http://wiki.creativecommons.org/Considerations_for_licensors_and_licensees#Considerations_for_licensors].

	Considerations for the public: By using one of our public licenses, a licensor grants the public permission to use the licensed material under specified terms and conditions. If the licensor’s permission is not necessary for any reason–for example, because of any applicable exception or limitation to copyright–then that use is not regulated by the license. Our licenses grant only permissions under copyright and certain other rights that a licensor has authority to grant. Use of the licensed material may still be restricted for other reasons, including because others have copyright or other rights in the material. A licensor may make special requests, such as asking that all changes be marked or described. Although not required by our licenses, you are encouraged to respect those requests where reasonable. More considerations for the public [http://wiki.creativecommons.org/Considerations_for_licensors_and_licensees#Considerations_for_licensees].

Creative Commons Attribution 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms and conditions of this Creative Commons Attribution 4.0 International Public License (“Public License”). To the extent this Public License may be interpreted as a contract, You are granted the Licensed Rights in consideration of Your acceptance of these terms and conditions, and the Licensor grants You such rights in consideration of benefits the Licensor receives from making the Licensed Material available under these terms and conditions.

Section 1 – Definitions.

a. Adapted Material means material subject to Copyright and Similar Rights that is derived from or based upon the Licensed Material and in which the Licensed Material is translated, altered, arranged, transformed, or otherwise modified in a manner requiring permission under the Copyright and Similar Rights held by the Licensor. For purposes of this Public License, where the Licensed Material is a musical work, performance, or sound recording, Adapted Material is always produced where the Licensed Material is synched in timed relation with a moving image.

b. Adapter’s License means the license You apply to Your Copyright and Similar Rights in Your contributions to Adapted Material in accordance with the terms and conditions of this Public License.

c. Copyright and Similar Rights means copyright and/or similar rights closely related to copyright including, without limitation, performance, broadcast, sound recording, and Sui Generis Database Rights, without regard to how the rights are labeled or categorized. For purposes of this Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights.

d. Effective Technological Measures means those measures that, in the absence of proper authority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO Copyright Treaty adopted on December 20, 1996, and/or similar international agreements.

e. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or limitation to Copyright and Similar Rights that applies to Your use of the Licensed Material.

f. Licensed Material means the artistic or literary work, database, or other material to which the Licensor applied this Public License.

g. Licensed Rights means the rights granted to You subject to the terms and conditions of this Public License, which are limited to all Copyright and Similar Rights that apply to Your use of the Licensed Material and that the Licensor has authority to license.

h. Licensor means the individual(s) or entity(ies) granting rights under this Public License.

i. Share means to provide material to the public by any means or process that requires permission under the Licensed Rights, such as reproduction, public display, public performance, distribution, dissemination, communication, or importation, and to make material available to the public including in ways that members of the public may access the material from a place and at a time individually chosen by them.

j. Sui Generis Database Rights means rights other than copyright resulting from Directive 96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection of databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere in the world.

k. You means the individual or entity exercising the Licensed Rights under this Public License. Your has a corresponding meaning.

Section 2 – Scope.

a. License grant.

	Subject to the terms and conditions of this Public License, the Licensor hereby grants You a worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed Rights in the Licensed Material to:

A. reproduce and Share the Licensed Material, in whole or in part; and

B. produce, reproduce, and Share Adapted Material.

	Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations apply to Your use, this Public License does not apply, and You do not need to comply with its terms and conditions.

	Term. The term of this Public License is specified in Section 6(a).

	Media and formats; technical modifications allowed. The Licensor authorizes You to exercise the Licensed Rights in all media and formats whether now known or hereafter created, and to make technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any right or authority to forbid You from making technical modifications necessary to exercise the Licensed Rights, including technical modifications necessary to circumvent Effective Technological Measures. For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4) never produces Adapted Material.

	Downstream recipients.

A. Offer from the Licensor – Licensed Material. Every recipient of the Licensed Material automatically receives an offer from the Licensor to exercise the Licensed Rights under the terms and conditions of this Public License.

B. No downstream restrictions. You may not offer or impose any additional or different terms or conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing so restricts exercise of the Licensed Rights by any recipient of the Licensed Material.

	No endorsement. Nothing in this Public License constitutes or may be construed as permission to assert or imply that You are, or that Your use of the Licensed Material is, connected with, or sponsored, endorsed, or granted official status by, the Licensor or others designated to receive attribution as provided in Section 3(a)(1)(A)(i).

b. Other rights.

	Moral rights, such as the right of integrity, are not licensed under this Public License, nor are publicity, privacy, and/or other similar personality rights; however, to the extent possible, the Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited extent necessary to allow You to exercise the Licensed Rights, but not otherwise.

	Patent and trademark rights are not licensed under this Public License.

	To the extent possible, the Licensor waives any right to collect royalties from You for the exercise of the Licensed Rights, whether directly or through a collecting society under any voluntary or waivable statutory or compulsory licensing scheme. In all other cases the Licensor expressly reserves any right to collect such royalties.

Section 3 – License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.

	If You Share the Licensed Material (including in modified form), You must:

A. retain the following if it is supplied by the Licensor with the Licensed Material:

i. identification of the creator(s) of the Licensed Material and any others designated to receive attribution, in any reasonable manner requested by the Licensor (including by pseudonym if designated);

ii. a copyright notice;

iii. a notice that refers to this Public License;

iv. a notice that refers to the disclaimer of warranties;

v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable;

B. indicate if You modified the Licensed Material and retain an indication of any previous modifications; and

C. indicate the Licensed Material is licensed under this Public License, and include the text of, or the URI or hyperlink to, this Public License.

	You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the medium, means, and context in which You Share the Licensed Material. For example, it may be reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that includes the required information.

	If requested by the Licensor, You must remove any of the information required by Section 3(a)(1)(A) to the extent reasonably practicable.

	If You Share Adapted Material You produce, the Adapter’s License You apply must not prevent recipients of the Adapted Material from complying with this Public License.

Section 4 – Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the Licensed Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce, and Share all or a substantial portion of the contents of the database;

b. if You include all or a substantial portion of the database contents in a database in which You have Sui Generis Database Rights, then the database in which You have Sui Generis Database Rights (but not its individual contents) is Adapted Material; and

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations under this Public License where the Licensed Rights include other Copyright and Similar Rights.

Section 5 – Disclaimer of Warranties and Limitation of Liability.

a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor offers the Licensed Material as-is and as-available, and makes no representations or warranties of any kind concerning the Licensed Material, whether express, implied, statutory, or other. This includes, without limitation, warranties of title, merchantability, fitness for a particular purpose, non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors, whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in part, this disclaimer may not apply to You.

b. To the extent possible, in no event will the Licensor be liable to You on any legal theory (including, without limitation, negligence) or otherwise for any direct, special, indirect, incidental, consequential, punitive, exemplary, or other losses, costs, expenses, or damages arising out of this Public License or use of the Licensed Material, even if the Licensor has been advised of the possibility of such losses, costs, expenses, or damages. Where a limitation of liability is not allowed in full or in part, this limitation may not apply to You.

c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in a manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver of all liability.

Section 6 – Term and Termination.

a. This Public License applies for the term of the Copyright and Similar Rights licensed here. However, if You fail to comply with this Public License, then Your rights under this Public License terminate automatically.

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:

	automatically as of the date the violation is cured, provided it is cured within 30 days of Your discovery of the violation; or

	upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to seek remedies for Your violations of this Public License.

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate terms or conditions or stop distributing the Licensed Material at any time; however, doing so will not terminate this Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7 – Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different terms or conditions communicated by You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated herein are separate from and independent of the terms and conditions of this Public License.

Section 8 – Interpretation.

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to, reduce, limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully be made without permission under this Public License.

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall be automatically reformed to the minimum extent necessary to make it enforceable. If the provision cannot be reformed, it shall be severed from this Public License without affecting the enforceability of the remaining terms and conditions.

c. No term or condition of this Public License will be waived and no failure to comply consented to unless expressly agreed to by the Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or waiver of, any privileges and immunities that apply to the Licensor or You, including from the legal processes of any jurisdiction or authority.

Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons may elect to apply one of its public licenses to material it publishes and in those instances will be considered the “Licensor.” Except for the limited purpose of indicating that material is shared under a Creative Commons public license or as otherwise permitted by the Creative Commons policies published at creativecommons.org/policies [http://creativecommons.org/policies], Creative Commons does not authorize the use of the trademark “Creative Commons” or any other trademark or logo of Creative Commons without its prior written consent including, without limitation, in connection with any unauthorized modifications to any of its public licenses or any other arrangements, understandings, or agreements concerning use of licensed material. For the avoidance of doubt, this paragraph does not form part of the public licenses.

Creative Commons may be contacted at creativecommons.org

Reproducible analysis and Research Transparency

[image: Documentation Status] [http://reproducible-analysis-workshop.readthedocs.io/en/latest/?badge=latest]

This workshop was part of the Open Science Tools, Data & Technologies for Efficient Ecological & Evolutionary Research Symposium [https://nioo.knaw.nl/en/open-science-tools], organized by NIOO-KNAW and DANS-KNAW on 7 & 8 December 2017 at the Amsterdam Science Park [https://www.amsterdamsciencepark.nl/about-amsterdam-science-park/profile/].

Transparency, open sharing, and reproducibility are core values of science, but not always part of daily practice. This workshop provided an overview of current status in reproducible analysis in order to provide transparency in research. The workshop covered methodological topics (such as the use of the Open Science Framework and reporting guidelines) as well as software tools (such as Git, Docker, RMarkdown / knitr and Jupyter). Going beyond simple listing and presentations, the workshop focused on hands-on skill building, with exercises and tutorials covering most of the software aspects. Specifically, the agenda of the workshop was the following:

	08:40 - 09:00 Coffee break

	09:00 - 09:20 Introduction (Setup)

	09:20 - 10:10 Reproducible Research (Current state in Reproducible analysis and Research Transparency)

	10:10 - 11:00 Transparent Research (Overview of the Transparency and Openness Promotion (TOP) Guidelines (Center for Open Science))

	11:00 - 11:30 Coffee break

	11:30 - 12:15 Reproducibility in practice (Looking at versioning and standardization)

	12:15 - 13:00 Jupyter (Using the Jupyter environment; languages supported and live documents.)

	13:00 - 14:00 Lunch break

	14:00 - 14:45 R for Reproducible Scientific Analysis (Writing modular code and best practices for using R for data analysis within Jupyter.)

	14:45 - 15:30 R for Reproducible Scientific Analysis (RMarkdown in RStudio and knitr)

	15:30 - 16:00 Coffee break

	16:00 - 16:45 Versioning with Git (Version control. Open collaborative coding.)

	16:45 - 17:30 Docker (Putting it all together.)

	17:30 - 18:00 Closing (Discussion)

Venue

The workshop will take place at the Amsterdam Science Park, building CWI, Room Euler A.

The rendered site is available here [http://reproducible-analysis-workshop.readthedocs.io]

 _static/figs/metrics.png

_static/figs/phd101212s.gif
“FINAL doc

7
FINAL_rev.8.commentsS.
CORRECTIONS.doc

1
FINAL _rev.6.COMMENTS.doc

JORGE CHAM ©2012

N
FINAL_rev.18.comments?. F(NAL_rev‘zz‘comme’nfﬂ‘?‘
corrections?.MORE.30.doc corrections.10.#@%%WHYDD

WM. PHDCOMICS. COM

_static/figs/Reproducibility_Strategies.png
Open data -
with other scientists.

Pre-registration -
conducted

Collaboration

Working with other research groups, both —
formally and informally.

Automation

Finding technological ways of standardising

pramces thereby reducing the opportunity for

man error.

Open methods

Publicly publishing the detail of a

study protocol

Post-publication review

Continuing discussion of a study in a public forum
after it has been published (most are reviewed

before publication).
Reporting guideline:
Guidel Ahvmmm\
meet certain criteria when publishing studes

_static/figs/subset1a2.png

_images/JupyterEmptyNotebook.png
: Jupyter Untitled Last Checkpoint: a few seconds ago (unsaved changes) R Losout

File Edit View Insert Cell Kemel Widgets Help Trusted| & |R O

+ 3% @ B ¥ M B Ccoe MIEC]

[

_static/figs/subset1b1.png
CatchDate

_static/figs/subset1a1.png
CatchDate

_images/JupyterNotebookFirstCommand.png
— Jupyter Untitled Last Checkpoint:a few seconds ago (unsaved changes) R Losout
File Edit View Insert Cell Kemel Widgets Help Trusted| & |R O

B+ 3 @B 4+ ¥ [N B C coe]

In[1]: 2+ 3

[l

_images/JupyterNotebookMultipleKernels.png
Z Jupyter Jupyter is fun! Last Checkpoint: 43 minutes ago (unsaved changes)

File Edt View Inset Cell Kemel Widgets Help

B+ 5 @B 4 v N EC coe "[=
(] []
[] []] (]
e e
20- [)
5 6

Sepal.Length

In [1]: | print(“Hello World!")
Hello korld!

In [2]: elements = ['oxygen', ‘nitrogen’, ‘argon’]
for char in elements:
print (char)

oxygen
nitrogen
argon

A Logout

Trusted| ¢ |Python3 O

_images/JupyterFilesList.png
Z Jupyter Logout

Files | Running Clusters

Select tems to perform actions on them. Upiozd | [New~ || &
0 |~ |\m Name 4 | | Last Modified 4
0 0 data 37 minutes ago

O & Mouse Gene Expression Heatmap and Clustering.ipynb 44 minutes ago

_static/figs/subset1b2.png

_images/JupyterNotebookCommandAndText.png
- B
— Jupyter Jupyter is fun! Last Checkpoint: 26 minutes ago (unsaved changes) R losout
File Edit View Insert Cell Kemel Widgets Help Trusted| & |R O

+3% @B [+ ¥ M B Clcoe v [e=
In[a]:[2+3

5

Writing Notebooks

We can wite lots of formatted text here, using the Markdown syntax. It is an easy way to write pretty text easily and efficiently.

Formatting
It does support several common formatting styles:

- ltcan do bold

« ltcan do italics

« ltcan also do sup lists
= with items one
- two
= andthree

It also allows to write LaTex equations, like that

c=vad +17

Pretty neat, right?

_static/figs/subset2a.png

_images/Reproducibility_Issues.png
reg

5
@

A\sc know
p-hacking, this i
repea tedly searching
a dataset or trying
alternative analyses until
a significant’ result is
found

Errors
Technical errors may
exist within a study, such
as misidentified reagents
or computational errors,

mitting nul
results
When scientists or
journals decide not
to publish studies
unless results
are statistically
significant

Issues

meth
Astu dy may be
robust, but its et ods
not shared with other
scientists in enough
detail, so others cannot
precisely replicate it

Underspecified
ods

Underpowered
study
Statistical power s the
ability of an ana\ys\s
to detect an effect, if
the effect ex\sts —-an
underpowered study
is too small to reliably
indicate whether or not
an effect exists.

o
X
o

me
design
study may have one
or more methodological
flaws that mean it is

unlikely to produce
reliable or valid results.

_images/Reproducibility_Strategies.png
Open data -
with other scientists.

Pre-registration -
conducted

Collaboration

Working with other research groups, both —
formally and informally.

Automation

Finding technological ways of standardising

pramces thereby reducing the opportunity for

man error.

Open methods

Publicly publishing the detail of a

study protocol

Post-publication review

Continuing discussion of a study in a public forum
after it has been published (most are reviewed

before publication).
Reporting guideline:
Guidel Ahvmmm\
meet certain criteria when publishing studes

_static/screenshots/JupyterFilesList.png
Z Jupyter Logout

Files | Running Clusters

Select tems to perform actions on them. Upiozd | [New~ || &
0 |~ |\m Name 4 | | Last Modified 4
0 0 data 37 minutes ago

O & Mouse Gene Expression Heatmap and Clustering.ipynb 44 minutes ago

_images/Rmd_chunk_options.png
[
eval
echo
warning
error
message
tidy
results

default effect

TRUE Whether to evaluate the code and includeiits results
TRUE Whether to display code along with its results

TRUE Whether to display warnings

FALSE Whether to display errors

TRUE Whether to display messages

FALSE Whether to reformat code in a tidy way when displaying it
"markup” ‘asis", "hold", or "hide"

_static/screenshots/JupyterNotebookCommandAndText.png
- B
— Jupyter Jupyter is fun! Last Checkpoint: 26 minutes ago (unsaved changes) R losout
File Edit View Insert Cell Kemel Widgets Help Trusted| & |R O

+3% @B [+ ¥ M B Clcoe v [e=
In[a]:[2+3

5

Writing Notebooks

We can wite lots of formatted text here, using the Markdown syntax. It is an easy way to write pretty text easily and efficiently.

Formatting
It does support several common formatting styles:

- ltcan do bold

« ltcan do italics

« ltcan also do sup lists
= with items one
- two
= andthree

It also allows to write LaTex equations, like that

c=vad +17

Pretty neat, right?

nav.xhtml

 Table of Contents

 		
 Table of Contents

 		
 Setting up

 		
 Git

 		
 Jupyter

 		
 Installation

 		
 Using Jupyter notebooks:

 		
 References for learning Python

 		
 R / RStudio

 		
 Install the required packages

 		
 Install the R Kernel for Jupyter

 		
 Introduction to the Reproducible analysis and Research Transparency workshop

 		
 Learning objectives for this workshop:

 		
 Replication and reproduction

 		
 Science retracts paper without agreement of lead author.

 		
 Retracted, but not fraud

 		
 The Four Facets of reproducibility:

 		
 References / Sources

 		
 Transparent, Reproducible and Open Research

 		
 Transparency

 		
 Questionable Research Practice

 		
 Reproducibility

 		
 Automation and provenance tracking

 		
 Availability of software and data

 		
 Open reporting of results

 		
 References / Sources

 		
 Tools and Platforms for Reproducibility and Transparency in research

 		
 R And The History of Reproducible Research

 		
 The Open Science Framework

 		
 Other things the OSF supports

 		
 Dryad

 		
 Figshare

 		
 Zenodo

 		
 References / Sources

 		
 Jupyter Notebook for Open Science

 		
 Introduction to Markdown

 		
 Jupyter and R Notebooks are types of dynamic documents

 		
 Markdown

 		
 So, what is a Jupyter notebook?

 		
 Cool! How do I install Jupyter?

 		
 Ok, I’m set! What’s next?

 		
 Creating a Notebook

 		
 Combining multiple kernels

 		
 Mingling data, code and text

 		
 Sharing Notebooks

 		
 The Future of Jupyter

 		
 Reading material

 		
 References / Sources

 		
 R for Reproducible Scientific Analysis (Jupyter)

 		
 Data

 		
 Code and document

 		
 Loading and Cleaning Data

 		
 Subsetting our data

 		
 Using the vegan package

 		
 Transforming the data to vegan requirements

 		
 Calculating diversity: Shannon, Simpson and Inverted Simpson.

 		
 Calculating species richness

 		
 Calculating fisher.alpha

 		
 Richness and Evenness

 		
 Results

 		
 Conclusions

 		
 References / Sources

 		
 R for Reproducible Scientific Analysis (RMarkdown / knitr)

 		
 RMarkdown

 		
 A few step workflow

 		
 Creating a .Rmd File

 		
 Anatomy of Rmarkdown file

 		
 1. YAML Headers

 		
 2. Narrative/Description of your analysis

 		
 3. Code

 		
 a. Inline R Code

 		
 b. Code Chunks

 		
 Chunk Labels

 		
 Chunk Options

 		
 Figures

 		
 Global Chunk Options

 		
 Tables

 		
 Citations and Bibliography

 		
 Bibliography

 		
 Placement

 		
 Citation Styles

 		
 Citations

 		
 Publishing on RPubs

 		
 Amazing Resources for learning Rmarkdown

 		
 References / Sources

 		
 Versioning with Git

 		
 Software Carpentry source lesson

 		
 Automated Version Control

 		
 How can version control help me make my work more open?

 		
 Storing our newly created Jupyter file to GitHub

 		
 Creating a repository

 		
 Our first commit

 		
 Pushing our Jupyter notebook to GitHub

 		
 References / Sources

 		
 Docker and Reproducibility

 		
 Docker

 		
 When to build a Docker image

 		
 Distributing a Docker Image

 		
 Running a Docker image

 		
 Jupyter, Docker, MyBinder

 		
 References / Sources

_static/screenshots/JupyterEmptyNotebook.png
: Jupyter Untitled Last Checkpoint: a few seconds ago (unsaved changes) R Losout

File Edit View Insert Cell Kemel Widgets Help Trusted| & |R O

+ 3% @ B ¥ M B Ccoe MIEC]

[

_images/Rmd_workflow_cheatsheet.png
i.Open-Open afilethat . Write - Write contentwiththe i, Embed - Embed R code that iv. Render - Replace R code with its output and transiorm
Usesthe Rmd extension. easy touse R Marklown syntax creates output toinclude n the report _the report into slidezhow, o html or m Word file.

A reports A report.
A plot: A plot:

R o
hast(con) nistleon)

_static/screenshots/Rmd_chunk_options.png
[
eval
echo
warning
error
message
tidy
results

default effect

TRUE Whether to evaluate the code and includeiits results
TRUE Whether to display code along with its results

TRUE Whether to display warnings

FALSE Whether to display errors

TRUE Whether to display messages

FALSE Whether to reformat code in a tidy way when displaying it
"markup” ‘asis", "hold", or "hide"

_static/screenshots/Rmd_output.png
BTEX

HTML

_images/Rmd_output.png
BTEX

HTML

_static/screenshots/JupyterNotebookFirstCommand.png
— Jupyter Untitled Last Checkpoint:a few seconds ago (unsaved changes) R Losout
File Edit View Insert Cell Kemel Widgets Help Trusted| & |R O

B+ 3 @B 4+ ¥ [N B C coe]

In[1]: 2+ 3

[l

_images/Rmd_workflow.png
@ e

_static/screenshots/JupyterNotebookMultipleKernels.png
Z Jupyter Jupyter is fun! Last Checkpoint: 43 minutes ago (unsaved changes)

File Edt View Inset Cell Kemel Widgets Help

B+ 5 @B 4 v N EC coe "[=
(] []
[] []] (]
e e
20- [)
5 6

Sepal.Length

In [1]: | print(“Hello World!")
Hello korld!

In [2]: elements = ['oxygen', ‘nitrogen’, ‘argon’]
for char in elements:
print (char)

oxygen
nitrogen
argon

A Logout

Trusted| ¢ |Python3 O

_images/subset1a1.png
CatchDate

_static/screenshots/Rmd_workflow.png
@ e

_images/metrics.png

_images/subset1a2.png

_static/figs/subset2b.png

_images/subset1b1.png
CatchDate

_images/subset1b2.png

_static/ajax-loader.gif

_images/subset2a.png

_images/subset2b.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/screenshots/Rmd_workflow_cheatsheet.png
i.Open-Open afilethat . Write - Write contentwiththe i, Embed - Embed R code that iv. Render - Replace R code with its output and transiorm
Usesthe Rmd extension. easy touse R Marklown syntax creates output toinclude n the report _the report into slidezhow, o html or m Word file.

A reports A report.
A plot: A plot:

R o
hast(con) nistleon)

_static/down.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/figs/Reproducibility_Issues.png
reg

5
@

A\sc know
p-hacking, this i
repea tedly searching
a dataset or trying
alternative analyses until
a significant’ result is
found

Errors
Technical errors may
exist within a study, such
as misidentified reagents
or computational errors,

mitting nul
results
When scientists or
journals decide not
to publish studies
unless results
are statistically
significant

Issues

meth
Astu dy may be
robust, but its et ods
not shared with other
scientists in enough
detail, so others cannot
precisely replicate it

Underspecified
ods

Underpowered
study
Statistical power s the
ability of an ana\ys\s
to detect an effect, if
the effect ex\sts —-an
underpowered study
is too small to reliably
indicate whether or not
an effect exists.

o
X
o

me
design
study may have one
or more methodological
flaws that mean it is

unlikely to produce
reliable or valid results.

_static/up-pressed.png

_static/up.png

